Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis

نویسندگان

  • Jennifer L Nemhauser
  • Todd C Mockler
  • Joanne Chory
چکیده

How growth regulators provoke context-specific signals is a fundamental question in developmental biology. In plants, both auxin and brassinosteroids (BRs) promote cell expansion, and it was thought that they activated this process through independent mechanisms. In this work, we describe a shared auxin:BR pathway required for seedling growth. Genetic, physiological, and genomic analyses demonstrate that response from one pathway requires the function of the other, and that this interdependence does not act at the level of hormone biosynthetic control. Increased auxin levels saturate the BR-stimulated growth response and greatly reduce BR effects on gene expression. Integration of these two pathways is downstream from BES1 and Aux/IAA proteins, the last known regulatory factors acting downstream of each hormone, and is likely to occur directly on the promoters of auxin:BR target genes. We have developed a new approach to identify potential regulatory elements acting in each hormone pathway, as well as in the shared auxin:BR pathway. We show that one element highly overrepresented in the promoters of auxin- and BR-induced genes is responsive to both hormones and requires BR biosynthesis for normal expression. This work fundamentally alters our view of BR and auxin signaling and describes a powerful new approach to identify regulatory elements required for response to specific stimuli.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brassinosteroid signaling and auxin transport are required to establish the periodic pattern of Arabidopsis shoot vascular bundles.

The plant vascular system provides transport and support capabilities that are essential for plant growth and development, yet the mechanisms directing the arrangement of vascular bundles within the shoot inflorescence stem remain unknown. We used computational and experimental biology to evaluate the role of auxin and brassinosteroid hormones in vascular patterning in Arabidopsis. We show that...

متن کامل

A brassinosteroid-hypersensitive mutant of BAK1 indicates that a convergence of photomorphogenic and hormonal signaling modulates phototropism.

The phototropic response of Arabidopsis (Arabidopsis thaliana) is induced by the phototropin photoreceptors and modulated by the cryptochrome and phytochrome photoreceptors. Downstream of these photoreceptors, asymmetric lateral redistribution of auxin underlies the differential growth, which results in phototropism. Historical physiological evidence and recent analysis of hormone-induced gene ...

متن کامل

The sterol methyltransferases SMT1, SMT2, and SMT3 influence Arabidopsis development through nonbrassinosteroid products.

Plant sterols are structural components of cell membranes that provide rigidity, permeability, and regional identity to membranes. Sterols are also the precursors to the brassinosteroid signaling molecules. Evidence is accumulating that specific sterols have roles in pattern formation during development. COTYLEDON VASCULAR PATTERNING1 (CVP1) encodes C-24 STEROL METHYLTRANSFERASE2 (SMT2), one of...

متن کامل

Bipartite promoter element required for auxin response.

Multiple mechanisms have been described for coordination of responses to the plant hormones auxin and brassinosteroids (Zhang et al., 2009). One unexplained phenomenon is the reliance of the auxin transcriptional response on a functional brassinosteroid pathway. In this study, we used luciferase reporters to interrogate the promoter of SMALL AUXIN-UP RNA15 (SAUR15), a well-characterized auxin a...

متن کامل

Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components.

PREMISE OF THE STUDY To reach favorable conditions for photosynthesis, seedlings grow upward when deprived of light upon underground germination. To direct their growth, they use their negative gravitropic capacity. Negative gravitropism is under tight control of multiple hormones. METHODS By counting the number of standing plants in a population or by real time monitoring of the reorientatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • PLoS Biology

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2004